Канал магии и эзотерики
Эзотерика для начинающих

Теория перехода в 5 измерение

 

Основы живого питания

Статистика сайта


ТОП-777: рейтинг сайтов, развивающих Человека
Flag Counter

195085592

В прошлом двадцатом веке случилось событие, равного по масштабу которого в математике не было за всю ее историю. 19-го сентября 1994 года была доказана  теорема, сформулированная Пьером де Ферма (1601-1665) более 350-ти лет назад в 1637 году. 
 

 

Итак, Великая теорема Ферма (нередко называемая послед­ней теоремой Ферма), сформулированная в 1637 году блестя­щим французским математиком Пьером Ферма , очень проста по своей сути и понятна любому человеку со средним образова­нием. Она гласит, что формула  а в степени n + b  в степени n = c в степени n не имеет натуральных (то есть не дробных) решений для n > 2. Вроде все просто и понятно, но лучшие ученые-математики и простые любители бились над поиском решения более трех с половиной веков.
Почему она так знаменита? Сейчас узнаем …

Мало ли доказанных, недоказанных и пока не доказанных теорем? Тут все дело в том, что Великая теорема Ферма являет собой самый большой контраст между простотой формулировки и сложностью доказательства. Великая теорема Ферма – задача невероятно трудная, и тем не менее ее формулировку может понять каждый с 5-ю классами средней школы, а вот доказательство – даже далеко не всякий математик-профессионал. Ни в физике, ни в химии, ни в биологии, ни в той же математике нет ни одной проблемы, которая формулировалась бы так просто, но оставалась нерешенной так долго. 2. В чем же она состоит?

Начнем с пифагоровых штанов Формулировка действительно проста – на первый взгляд. Как известно нам с детства, «пифагоровы штаны на все стороны равны». Проблема выглядит столь простой потому, что в основе ее лежало математическое утверждение, которое всем известно, – теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.

В V веке до н.э. Пифагор основал пифагорейское братство. Пифагорейцы, помимо прочего, изучали целочисленные тройки, удовлетворяющие равенству x²+y²=z². Они доказали, что пифагоровых троек бесконечно много, и получили общие формулы для их нахождения. Наверное, они пробовали искать тройки и более высоких степеней. Убедившись, что это не получается, пифагорейцы оставили бесполезные попытки. Члены братства были больше философами и эстетами, чем математиками.

То есть легко подобрать множество чисел, которые прекрасно удовлетворяют равенству x²+y²=z²

Начиная с 3, 4, 5 – действительно, младшекласснику понятно, что 9+16=25.

Или 5, 12, 13: 25 + 144 = 169. Замечательно.

Ну и так далее. А если взять похожее уравнение x³+y³=z³ ? Может, тоже есть такие числа?

Подробности далее

Подписка на новости

Введите ваш e-mail

Сервис от FeedBurner


banner
Эзотерика для начинающих

Кто и зачем может учиться магии? Магия наука, искусство или религия?

 

Беседы о Магии проводятся каждый четверг в 22-30.

Вход здесь

Смотрите записи
Бесед о Магии

Здесь

Сознание и подсознание

Сознание и подсознание. Управление и усложнение.

Талисманы и артефакты

Талисманы и артефакты

Каждый четверг в Европейской школе магии "Sphinx Vision" открытые беседы о Магии.

Вход здесь

Copyright © 2015. All Rights Reserved.